The STL Made Simple

BruceEckel
November22,1999

Contents
lL_The Basic Concepts]| 2
2__Containers of strings 5
B Inhern 3 o
B.1 Directorylisting] 9
4_The amazing sef 11
5_The magic of maps 13
6 STL algorithms 15
[7_Where to go from here 19
Preface

Of courseyou've beenhearingall abouthow powerful the STL is andhow easyit’s goingto make
yourlife. Butwhenyougoto learnaboutit, whatdoyou get?Lots aboutiterators:forwarditerators,
bidirectionaliterators,othertypesof iterators. A numberof differenttypesof containerssomeof
which seemto do the samething. And a seeminglyendlessnumberof algorithms. Do you really
have to know all the detailsandtheoryfor this stuff in orderto getsomegoodfrom the STL?

Emphaticallyno. The premiseof this paperis thattheres a relatively small subsebf elements
andideas(let's say 10%) you needto understandn orderto get 90% of the usefulnesgrom the
STL. The “simple 10%” is stuff you canuseon a day-to-daybasiswithout looking anything up.
Understandinghis portionwill alsogetyou comfortablewith thebasicideasin the STL sothatyou
cango look up the moredifficult stuff if you ever needit.

After learningaboutthebasicconceptsyou’ll seeanumberof increasinglypowerful examples.
By theendyou shouldhave a goodgraspof boththe simplicity andpower of the STL portionof the
StandardC++ Library.

1 The Basic Concepts

Theprimaryideain the STL isthe container(alsoknowvn asacollection), afundamentatoncepin
object-oriente¢programming.A containeris just that: a placeto hold things. You needcontainers
becausbjectsare constantlymarchingin andout of your programandtheremustbe someplace
to putthemwhile they’'re around.You cant make namedocal objectsbecausén atypical program
you don't know how mary, or whattype, orthelifetime of the objectsyou're working with. Soyou
actuallyneeda containerthatwill expandwheneer necessaryo fill your needs.

All the containersn the STL hold objectsandexpandthemseles. In addition,they hold your
objectsin a particularsequenceThe differencebetweenone containerand anotheris the way the
objectsareheldandhow the sequencés createdL et’s startby looking at the simplestcontainers.

A vector is alinear sequencehatallows you to rapidly move aroundin a randomfashion,but
it's expensve to insertanelementin the middle of thesequenceA list is alsoalinearsequencehut
it's expensve to move aroundrandomlyanccheapto insertan elementin the middle. Thuslist and
vector arevirtually identicalin their basicfunctionalitybut differentin the costof their actiities.
Sofor your firstshotat a program,you could useeitherone,andonly experimentwith the otherif
you're tuningfor efficiency.

Mostof the problemsyou setoutto solve will only requireasimplelinearsequencéke avector
or list. Both of these(indeed,mostof the STL containershave memberfunctionspush_front()
andpush_back() which youuseto inserta new elementnto the front or the backof thesequence.

But now how do you retrieve thoseelementsVith a vector, it is possibleto usethe indexing
operator{], but thatdoesnt work with list. Sinceit would be nicestto learnasingleinterface,we’ll
usethe onedefinedfor all STL containerstheiterator.

An iteratoris a classthat abstractghe processof moving througha sequence.lt allows you
to selecteachelementof a sequenceavithout knowingthe underlyingstructue of that sequence
This is a powerful feature partly becausét allows usto learnasingleinterfacethatworkswith all
containersandpartly becausét allows containergo beusedinterchangeably

Onemoreobseration andyou're readyfor anexample. Eventhoughthe STL containershold
objectsby value(thatis, they hold thewhole objectinsidethemseles)that’s probablynot the way
you'llgenerallyusethemtimeif you're doingobject-orienteghrogramming.That'sbecausén OOR
mostof thetime you're creatingobjectsorthe heapwith new andupcastingheaddresgo thebase
classtype, manipulatingit asa pointerto the baseclassThe beautyof this is thatyou don't worry
aboutthe specifictype of objectyou're dealingwith, which greatlyreduceghe compleity of your
codeandincreaseshe maintainabilityof your program. This procesof upcastings whatyou try
to doin OOR soyou'll usuallybe usingcontainersof pointers.

Considerthe classic*shape”examplewhereshapedave a setof commonoperationsandyou
have differenttypesof shapes.Heres whatit lookslike usingthe STL vector to hold pointersto
varioustypesof shapecreatecon the heap:

[]: STLSHAPE. CPP -- sinple shapes w STL
#i ncl ude <vector. h>
#i ncl ude <i ostream h>
usi ng nanespace std;
cl ass shape {
public:
virtual void draw() = O;
virtual ~shape() {};

b

class circle : public shape {
public:
void draw() { cout << "circle::dramn"; }
~circle() { cout << "~circle\n"; }

1
class triangle : public shape
{
public:
void draw() { cout << "triangle::drawn"; }
~triangle() { cout << "~triangle\n"; }
1
cl ass square : public shape
{
public:
void draw() { cout << "square::drawn"; }
~square() { cout << "~square\n"; }
1

t ypedef vector<shape*> cont ai ner
typedef container::iterator iter

int main()

{
cont ai ner shapes;
shapes. push_back(new circle);
shapes. push_back(new square);
shapes. push_back(new triangl e);

for (iter i=shapes.begin(); i != shapes.end();
(*i)->drawm(); // ... sonetime later:

for (iter j=shapes.begin(); j != shapes.end();
delete *j;

return O;

You canseeheretheveryimportantline:

usi ng nanespace std

i ++)

j)

This is essentiabecausdhe StandardC++ librariesare placedintheir own namespacea rel-
atively new featurein C++ thatallows you to keepall the namesin your programfrom colliding.
The StandardC++ librariesarein a namespacealled std, andwithout the using directive shavn
above, the library nameswouldnt be visible in the programandyou’ll getall sortsof unseemly

errormessageat compiletime.

The creationof shape circle, square andtriangle shouldbe fairly familiar. shapeis a pure
abstracbaseclass(becaus®f thepure specifier=0) thatdefinegheinterfacefor all typesof shapes
thederved classesedefinethevirtual functiondraw() to performtheappropriateoperation.Now

we'd like to createa bunch of differenttypesof shapeobject, but whereto putthem?In an STL
containerof course For corveniencethetypedef

t ypedef vector<shape*> cont ai ner;

createsanaliasfor avector of shape* andthaypedef
typedef container::iterator iter;

usesthataliasto createanotherone,for vector<shape*>::iterator . Noticethatthe container
namemustbe usedto producethe appropriatéterator whichis definedasa nestedclass.Although
therearediferenttypesof iteratorg(forward, bidirectional reverse etc.) all theoneswe're interested
in herehave the samebasicinterface: you canincrementhemwith ++, you candereferencéhem
to producethe objectthey’re currentlyselecting andyou cantestthemto seeif they're attheendof
the sequenceThat's whatyou'll wantto do 90% of thetime. And that's whatis donein theabove
example:aftercreatinga containerit’ s filled with differenttypesof shape* Noticethatthe upcast
happenssthecircle, square or rectanglepointeris addedto the shapescontainerwhich doesnt
know aboutthosespecifictypesbut insteadholdsonly shape* Soassoonasthe pointeris addedo
the containerit losesits specificidentity andbecomesananorymousshape* Thisis exactly what
we want: tossthemall in andlet polymorphisnsortit out.

The first for loop createsan iterator and setsit to the beginning of the sequencéy calling
the begin() memberfunction for the container All containershave begin() andend() member
functionsthatproduceaniteratorselectingrespectiely, the beginning of the sequencandonepast
the end of the sequence.To testto seeif you're done,you make sureyou're != to the iterator
producedby end(). Not < or <=. Theonly testthatworksis !=. Soit's very commonto write a
looplike:

for(iter i = shapes.begin(); i != shapes.end(); i++)

This says:“take methroughevery elementn the sequence.

Whatdo you do with theiteratorto producethe elementt’s selecting?You dereferencét using
(whatelse)the’*’ (which is actuallyan overloadedoperator). Whatyou getbackis whateserthe
containelis holding. This containetoldsshape*sothat’s what*i produceslf youwantto senda
messageo the shape you mustselectthatmessagevith ->, soyouwrite theline:

(*i)->draw();

Thiscallsthedraw() functionfor theshape*theiteratoris currentlyselecting.The parentheses
areugly but necessaryo producethe properorderof evaluation.

Finally, the STL containersdont call delete for the pointersthg contain. Theres no elegant
way for youto doit, eithefunlessyouwantto inheritfrom the containerclassin questiorandadda
memberfunctionto performthedelete for all the containedoointers.Oneof the problemss thatif
you createarobjecton the heapwith new andplaceit’s pointerina containeryou cant tell if that
pointeris alsoplacedinsideanothercontainer Sothe STL justdoesnt do arything aboutit,andputs
theresponsibilitysquarelyin your lap. Thelastlinesinthe programmove throughanddeleteevery
objectin the containerso propercleanupoccurs.

It'sveryinterestingo notethatyou canchangehetypeof containetthatthis programuseswith
two lines. Insteadof includingvector.h, youincludelist.h, andin thefirst typedefyou say:

t ypedef |ist<shape*> contai ner;

insteadof usingavector. Everythingelsegoesuntouched.This is possiblenot becausef an
interfaceenforcedby inheritancgthereisn't ary inheritancan the STL, which comesasa surprise
whenyoufirst seeit), but becauseheinterfaceis enforcedbya corventionadoptedoy thedesigners
of STL, preciselysoyou could performthis kind of interchangeNow | caneasilyswitch between
vector andlist andseewhich oneworksfastesfor my needs.

Sothis is what you're going to be doing mostof the time: creatinga containerof pointersto
the basetype, upcastingheap-basedbijectsinto thatcontainerandusinganiteratorto traversethe
sequencandperformoperationonit. Sure,therearelots of otherthingsyou maywantto do and
you might usean STL algorithmto performa particularoperation(sort() is a commonone) but
mostof thetime your programwill probablyendup with partsof it looking somethindikethe STL
SHAPEprogramabore. That's the basicidea,andnow we cantake thatconceptandstartapplying
it to the solutionof differentproblems.

2 Containers of strings

One of the biggesttime-wastersin C is characterarrays: keepingtrack of the differencebetween
staticquotedstringsandarrayscreatedn the stackandtheheap andthefactthatsometimesyou're
passingarounda char* and sometimesyou must copy the whole array (in C++ we sometimes
refer to this asthe generalproblemof shallow copyvs. deepcopy). Especiallybecausestring
manipulationis socommon charactearraysareagreatsourceof misunderstandingandbugs.

Despitethis, creatingstring classesemaineda commonexercisefor beginning C++ program-
mersfor mary years. At last, the StandardC++ library hasadopteda string classthat solves
thisproblem:string objectsdo all thework for you, in justtheway you'd expect,includingkeeping
track of memoryevenduring assignmentand copy-constructions You simply don't needto think
aboutit.

Oneof theplaceswherethisis particularlyusefulis pointedoutin theprior example.At theend
of main(), itwasnecessaryo move throughthewholelist anddeleteall theshapepointers.

for (iter j = shapes.begin(); j != shapes.end(); j++)
del ete *j;

This highlightswhat could be seenasa flaw in the STL: theres no facility in ary of the STL
containergo automaticallydelete pointersthey contain,soyou mustdo it by hand. It's asif the
assumptiorof the STL designerswas that containersof pointersweren’ an interestingproblem,
althoughl asserthatit is oneofthemorecommonthingsyou’ll wantto do.

Automaticallydeletinga pointerturnsout to be a ratheraggressie thing to do becausef the
multiplemembeshipproblem.If acontainetholdsapointerto anobject,it’snotunlikelythatpointer
could also be in anothercontainer A pointertoanaluminum objectin a list of trash pointers
couldalsoresidein alist of aluminum pointers.Thenwhich list is responsibldor cleaningup that
object- which list “owns” the object?

This questionis virtually eliminatedif the objectratherthana pointerresidesn thelist. Thenit
seemglearthatwhenthelist is destrged, the objectsit containsmustalsobedestrged. Here,the
STL shinesasyou canseewhencreatinga containerofstring objects:

/1

STRLIST.CPP -- A list of strings

#i ncl ude <string>
#i ncl ude <vector>
#i ncl ude <fstreanr
#i ncl ude <strstreanr
#i ncl ude <assert. h>

usi ng nanespace std;
int main(int argc, char* argv[])

{

assert(argc == 2);
ifstreamin(argv[1]);
assert (in);

vector<string> strings;

vector<string>: :iterator w

const int sz = 255;

char buf[sz];

while (in.getline(buf, sz))
strings. push_back(buf);

/1 Do sonething to the strings..

int i = 1;
for (w = strings.begin(); w!= strings.end(); wt+)
{

ostrstream os(buf, sz);

0S << | ++ << ends;

*w = string(buf) + string(": ") + *w

}

/1 Now send them out:

for (w= strings.begin(); w!= strings.end(); w+)
cout << *w << endl

/1 string objects clean thensel ves up

/1 since they aren’t pointers!

return O;

Notethe useof the new C++includesyntax:

#i ncl ude <string>

Whentheres no extension,it indicatesa C++ file; the .h extensionandicateC headers.Your

programmingsystemnis supposedo translatefrom the extensionlesfieademameto theappropriate
nameon the local system.Sincemostprogrammingsystemsdon'thave ary kind of directsupport
for this (Borland C++ 5 doessupportit automatically so you canusethe extensionornot, asyou
choose)t’s easyto usethis syntaxanyway: simplymale a copy of thefile with the extensionto the
extensionlessersian. Of courseyou cancontinueto usetheold styleof includeif youwish. Notice
that

#i ncl ude <strstreanr

givesanamethatis ninecharactersong, but if you move to theINCLUDE directoryyou’ll see
thatthefile nameis still STRSTREAM.H,sothe systemis performingthetranslationfor you.

Oncestrings is createdeachline in thefile is readinto buf andthensimultaneouslyurnedinto
astring andputin thevector:

while (in.getline(buf, sz))
strings. push_back(buf);

Sincestrings is a vector<string>, push_back()is expectinga string argument. It is handed
a char*, so the compilerlooks for a way to automaticallycorvert it intoa string object. The
string(char*) constructoproducesth@ecessarputomaticdype cornversion.

Theoperationthat’s beingperformedon thisfile is to addlinenumbersThe easiestvay to turn
numbersinto stringsis to puttheminto a stream,so an ostrstream (which formatstoa block of
memory)is usedwith the constructothatacceptshe memoryyou wantto useandthe sizeof that
memory Thenyou canwrite anything you wantinto that memoryandit endsup formattedthere
(but remembeto adda null terminatorto the endof thestringwith endd). You canevengetfancier
formatting,suchasjustificationwithin afield.

ostrstream os(buf, sz); os << i++ << ends;

Assemblingstring objectsis quiteeasysinceoperator+ is overloaded Amazinglyenoughthe
iteratorw canbedereferencetb producea stringthatcanbe usedasbothanrvalueand anlvalue:

*w = string(buf) + string(": ") + *w,

Thefactthatyou canassigrnbackinto the containewvia theiteratormay seema bit surprisingat
first, but it's a tribute to thecarefuldesignof the STL.

Theoperator< < is overloadedor ostreamandstring, soyou canjust dereferencéheiterator
to producethe string andsendtheresultto cout.

Becausehe vector<string> containsthe objectsthemseles, a numberof interestingthings
take place.First, no cleanups necessaryEvenif youwereto putaddressesf the string objectsas
pointersinto other containersit’s clearthatstrings is the “masterlist” andmaintainsownershipof
theobjects.

Secondyou areeffectively usingdynamicobjectcreation andyetyounever usenew or deletd
That's because,sometwit’s all taken careof for you by thevector (thisis non-trivial. You cantry
to figure it out by looking at the headeffiles for the STL - all the codeis there- but it's quite an
exercise).Thusyour codingis significantlycleanedup.

Thelimitation of holding objectsinsteadof pointersinsidecontainerss quite severe: you cant
upcastfrom derived types,thusyou cant usepolymorphism.The problemwith upcastingobjects
byvalueis thatthey getslicedand corverteduntil their type is completelychangednto the base
type,andtheres noremnaniof thederivedtypeleft. It's pretty safeto saythatyou never wantto do
this.

3 Inheriting from STL containers

The power of instantly creatinga sequencef elementds amazing,andt makesyou realizehowv
muchtime you've spent(or rather wasted)in the pastsolving this particularproblem. For exam-
ple,may utility programsnvolve readingafile into memory modifying thefile andwriting it back
out to disk. Onemight aswell take the functionalityin STRLIST.CPPand packagét into a class
for laterreuse.

Now thequestionis: doyou createamemberobjectof typevector, or doyouinherit? A general
guidelineis to alwaysprefercomposition(memberobjects)over inheritance put with the STL this
is often not true, becausdhereare so mary existing algorithmsthatwork with the STL typesthat
you maywantyour newn typeto beanSTL type. Sothelist of strings shouldalsobe a vector, thus
inheritancds desired.

/l: STREDIT.H -- File editor too
#i ncl ude <string>
#i ncl ude <vector>
#i ncl ude<i ostr eane

usi ng nanespace std;
class streditor : public vector<string>

{
public:
streditor(char* fil enane);
void wite(ostrean& out = cout);
b

The constructoropensthe file and readsit into the streditor,and write() putsthe vector of
string ontoary ostream Noticein write() thatyou canhave a defaultagumentfor areference.
Theimplementations quite simple:

//: STREDIT.CPP -- File editor too
#include "stredit.h"

#i ncl ude <fstreanr

#i ncl ude <assert. h>

streditor::streditor(char* fil enane)
{

ifstreamin(fil enane);

assert(in);

const int sz = 255;

char buf[sz];

while (in.getline(buf, sz))

push_back(buf);

}

void streditor::wite(ostrean& out)

{
for (iterator w=begin(); W =end(); w++)
out << *w << endl

Thefunctionsfrom STRLIST.CPParesimply repackagedOftenthisis theway classe®volve -
you startby creatinga programtosole a particularapplication thendiscorzer somecommonly-used
functionality within the programthatcanbeturnedinto a class.

Theline numberingprogramcannow be rewritten usingstreditor:

//: STREDTST.CPP -- Test the file edit too
#i nclude "stredit. h"
#i ncl ude <strstreane

usi ng nanespace std;

int main(int, char* argv[])
{
streditor
File(argv[1]); // Do sonething to the strings...
const int sz = 255;
char buf[sz];
int i =1;
streditor::iterator w = File.begin();
while (w!= File.end())

{

ostrstream os(buf, sz);
0S << | ++ << ends;
*w = string(buf) + string(": ") + *w
WH+;
} // Now send themto cout:
File.wite(cout);
return O;

Now the operationof readingthefile is in the constructor:
streditor File(argv[1]);
andwriting happensn thesingleline:

File.wite(cout);

Thebulk of the programis involved with actuallymodifying thefile in memory

3.1 Directory listing

As anotherexample,considetthe creationof adirectorylisting: you needa placeto keepall thefile
namesn adirectory Both alist anda vector seemto solve the problem,but you probablywon't
needto insertelementsn themiddlesowe’ll startwith avector (later, sortingmaywork betterwith
alist, but the STL is designedo accommodateasychanges).

This tool createsa vector<string>, thusit’s holdingt he string objectsthemseles and not
pointers,soyou don't have to worry aboutwho’s responsibldor cleaningup. The vector “owns”
thestring objects.

/l: FILELIST.H -- general file lister
#i ncl ude <string>

#i ncl ude <vect or>

#i ncl ude <i ostreanr

usi ng nanespacestd

class filelist : public vector<string>

{
public:
filelist (const char* afn ="*.*");
void listall (ostrean& os = cout,
const char* sep = "\n");
b

Only two memberfunctionsare necessaryo implementthe class. The constructomperforms
the filenameexpansion filling up the vector, andthe listall() function prints the informationto
an ostream referencg(defaulting to cout), delimitedwith your choiceof separatodefaulting to
newline). But is this meageitlistall() function the limit of whatyou cando with a filelist? No!
Becausét's inheritedfrom vector, you cando arnything to it that you canto a vector, including
creatinganiteratorandtraversingthelist for whaterer your purpose.You canalsousethevector's
indexing operator|]. You canseeall threeoperationsn this example:

//: FLTEST.CPP -- test file lister
#i nclude "filelist.h"

mai n()

{

filelist files;
files.listall();
for (int i =0; i <files.size(); i++)
cout << "(" << files[i] << ")" << endl;
copy (files.begin(), files.end(),
ostream.iterator<string>(cout, "\n"));

First, listall() is called, allowing it to useits default aguments. Second,a for loop counts
from 0 to size() (avector membeifunction)andthevector indexing operator|] is usedto produce
eachstring object. Finally, in the call to copy() (an STL algorithmthat's part of the Standard
C++ Library) you canseetheiteratorsproducedby begin() andend() passedn asargumentsthe
begin() iteratoris usedto move throughthe sequenceintil end(), asseenin the earlierexample.

The third iterator (that’s whatit is) in the call to copy() requiressomeexplanation. copy()
andmary of theotherSTL algorithmsjust wantto talk to iterators.In the caseof copy(), thethree
amgumentsare all iterators,specifying“where do | start”, “where do | finish”, and “where am |
copying to"? An ostreamis abit like a container(you put stuf into it, right?) sosomeonalecided
it would be corvenientto createan objectthatactslike aniteratorin orderto convenientlytalk to
thatcontainer:the ostream_iterator. This is a template;the templateargumentis the typeyou're
writing to the ostream (andthis typemusthave an overloadedoperator< < for ostreans), andthe

10

constructommgumentsarethe specificostreamyou’re writing to andthedelimiterto insertbetween
eachwrite. Thus,

copy (files.begin(), files.end(),
ostream.iterator<string>(cout, "\n"));

means:“start at the beginning of files andgo totheend,andcopy eachstring elementto cout,
separatingachwith anewline” Of courseyou couldwrite the codeyourselfaswasdonewith the
for loop, but thecopy() form s succinctandoftenused.It’ s alsoquiteeasyto changgour mind and
decideto move theinformationto a completelydifferentcontaineyrsincethe only accesss through
aniterator(which all containersanproduce).

The constructorusesfunctionsfoundin the Borland-specifiadir ect.h file, but this is not im-
portant,sincetheinformationis hiddenin the implementationandcanthusbe changedo suit the
operatingsystemandlibrary:

//: FILELIST.CPP -- Menber function definitions
#i nclude "filelist.h"
#include <direct.h> // DGCS directory

functionsfilelist::filelist(const char* afn)

{
ffblk fileinfo;

int done = findfirst(afn, & ileinfo, 0);
whil e (!done) /1 automatic type conversion

push_back(fil ei nfo.ff_nane);
done = findnext (&fil einfo);

}
}
void filelist::listall(ostream& os, const char* sep)
{
for (iterator i = begin(); i !'=end(); i++)
0S << (*i).c_str() << sep
}

Somethinghatmay strike you ascuriousatfirst is thefor loopin listall. Why canyou simply
say“iterator”, “begin()” and“end()” without referringto the classor object? Becausdilelist is
inheritedfrom vector<string>, all thosememberfunctionsandthe nestectclassarepart of filelist,
soyou canjustreferto them.

Now thatyou have thetool, creatingalist of fileswithin aprogrambecomesffortless.But even
moreamazingis how easyit wasto createthetool itself - becausenostof the work hasbeendone

in theSTL.

4 The amazing set
The setproducesa containerthatwill acceptonly oneofeachthing you placein it; it alsosortsthe

elements. To enablethis you musttell the sethow to sort the elementsusinga secondtemplate
argument.For asetof int, you say:

11

set <int, |ess<int>> intset;

Thelesint > is what establisheshe sortorder which is ascending.Only in rare caseswill
you usearything exceptless<type> asthe secondargument. This argumentallavs you to create
specialsortordersby defininga differentclasswhichis beyondthe scopeof this paper

To seehow a setworks,considerasetof int:

[1: I NTSET.CPP -- Sinple use of STL set
#i ncl ude <set. h>

usi ng nanespace std
void main()

{
set <int, |ess<int>> intset;
for(int i =0; i < 25; i++)
for(int j =0; j <10; j++) [/ Try to insert nultiple copies:
intset.insert(j); /1 Print to output:
copy(i ntset. begin(),
intset.end(), ostream.iterator<int>(cout, "\n"));
}

The insert() memberdoesall the work: it tries putting the nenv elementin, rejectsit if it's
alreadythere,andkeepsthelist sorted.Very oftenthe actiities involved in usinga setaresimply
insertionanda testto seewhetherit containstheelement.You canalsoform a union, intersection,
or differenceof sets,andtestto seeif onesetis a subsebf another

Consideithe problemof creatinganindex for abook. You mightlike to startwith all thewords
in the book, but you only wantone eachandyou wantthemsorted. Of course a setisperfectfor
this, andsolvesthe problemeffortlessly:

//: WORDLI ST. CPP -- Find uni que words
#i ncl ude <string>

#i ncl ude <set>

#i ncl ude <fstreanr

#i ncl ude <assert. h>

usi ng nanespace std;

const char* delimters =
AL OV s {3] - =&, I\ 101234567897

main (int argc, char* argv[])

{
assert(argc == 2);
ifstreamin(argv[1]);
assert (in);

set<string, |ess<string>> concordance;
const sz = 1024; char buf[sz];

while (in.getline(buf,sz)) // Capture individual words:
{

12

char* s = strtok(buf, delimters);
while (s)
{

concordance.insert(s); // Auto
type conv.s = strtok(0, delimters);

}

} // output results:
copy(concordance. begi n(), concordance. end(),
ostream.iterator<string>(cout, "\n"));

This is just an extensionof the previous example,but it opensa file, readseachline andthen
breakst up into wordsusingthe StandardC library functionstrtok(). Otherthanthatthe setdoes
all thework. Considerhowv mucheffort it would be to accomplishthe sametaskin C, or evenin
C++withoutthe STL.

Youdon't have to useasetjustto geta sortedsequenceYou canusethesort() function(along
with a multitudeof otherfunctionsin the STL) on avector or list.

5 The magic of maps

A map is anassociativearray, which meansyou associat®neaobjectwith anotherin anarray-like
fashion,but insteadof selectingan array elementwith a numberasyou do with anordinaryarray
you look it up with anobject! The examplewhich follows countsthe wordsin a text file, sothe
index is the string objectrepresentinghe word, andthe value beinglooked up is the objectthat
keepscountof thestrings.

In a single-itemcontainedike a vector or list,theres only onething beingheld. Butin amap,
you've gottwo things:thekey (whatyoulook up by, asin mapnamedkey]) andthevaluethatresults
from thelookup with the key.This is fine aslong asyou're usingan array-stylelookup, butwhatif
you simply wantto move throughthe entiremapandlist eachkey-value pair? Of courseyou use
aniterator like everythingelsein the STL, but sincetherearetwo items- the key andthe value-
which oneshouldtheiteratorproduce Dereferencin@map iteratorproducesothitems,packaged
togetherinto asingleobject(sinceafunctioncanonly returnasinglevalue)calledapair, atemplate
whosesolereasonfor existenceis to packagetwo objects. The definition for pair is remarkably
simple:

tenpl ate <class T1, class T2> struct pair

{
T1 first;

T2 second,
pair (const Tl1& a, const T2& b) : first(a), second(b) {}
b

You canseethatit doesnothingelsebut the packagingoperation.You accesshe membersf a
pair by selectingfirst or second

This samephilosophyof packagingtwo itemstogetheris alsousedto insertelementsnto the
map, but the pair is createdaspart of the instantiatednap andis calledvalue_type containing
the key andthe value. Sooneoptionfor insertinga new elementis to createa value_typeobiject,
loadingit with the appropriateobjectsandthencalling theinsert() memberfunctionfor the map.

13

However, thefollowing examplewill make useof aspeciafeatureof map: if you'retrying tofindan
objectby passingn akey to operator[] andthatobjectdoesnt exist, operator|] will automatically
inserta new key-value pair for you, usingthe default constructoffor the value object. With thatin

mind, consideranimplementatiorof aword countingprogram:

[1: WCOUNT.CPP -- Wrd Count with map cl ass
#i ncl ude <string>

#i ncl ude <map>

#i ncl ude <fstreanr

#i ncl ude <assert. h>

usi ng nanespace std;

cl ass Count
{ . .
int i;
public:
Count () : i(0) {}
void operator++(int) { i++; } // post-increnment
int val() { returni; }

1
t ypedef map<string, Count, |ess<string> > wordnap;
const char* delimters = "\t.,:;\"{}-+&%B#@~" 2/ \\|()[]<>*="

int main(int argc, char* argv[])
{
assert(argc == 2);
ifstreamin(argv[1]);
assert (in);

wor dmap wor ds;
const int sz = 255;
char buf[sz];
whi | e(in.getline(buf, sz))
{
char* word = strtok(buf, delimters);
whi | e(wor d)
{
wor ds[string(word)] ++;
word = strtok(0O, delimters);
}
}
for (wordmap::iterator w = words. begin();
w != words.end(); wt+)
cout << (*w).first << ": " << (*w).second.val () << endl
return O;

Theneedfor the Count classis to containanint that's automaticallyinitialized to zero. This is

14

necessarpecausef thecrucialline:
wor ds[stri ng(word)] ++;

Thisfindstheword thathasbeentokenizedby strtok() (asmentionedearlierin this paper)and
incrementghe Count objectassociatedvith thatword, which is fine aslong asthereis a key-value
pair for thatstring. If thereisn't, the map automaticallyinsertsa key for the word you're looking
up, and a default Count object, which is initialized to zero by the constructar Thus, whenit's
incrementedhe Count becomed.

Printing the entirelist requirestraversingit with an iterator (theres no copy() shortcutfor a
map). Aspreviously mentioned,dereferencinghis iterator producesa pair object, with the first
memberthe key andthe secondmemberthe value. In this casesecondis a Count object,soit’s
val() membemustbe calledto producethe actualword count.

If you wantto find the countfor a particularword, you canusethe arrayindex operator like
this:

cout << "the: " << words["the"] << endl

A morecomplicatedversionof map is the multimap which allows you to associatenorethan
oneobjectwith a key. A perfectexampleis athesauruswhereyou have a word andyou wantto
know all thewordsthataresimilar. Whenyou look up aword, then,you’ll getbackaniteratorto a
list of words. Theres anexampleof amultimap in the RogueWave HelpFiles,mentionedater.

6 STL algorithms

Theotherhalf of the STL is the algorithms which aretemplatizedunctionsdesignedo work with
thecontainersYou've seeroneexamplealreadyin thecopy() algorithmusedin WORDLIST.CPP:

copy (concordance. begi n(),
concor dance. end(),
ostream.iterator<string>(cout, "\n"));

The original designintent of the STL was aroundthe algorithms. The goal wasthat you use
algorithmsfor almostevery pieceofcodethatyou write. In this sensdt wasa bit of anexperiment,
andwe won't know for awhile how well it works. Thereasorfor thisis thatall the syntaxrequired
to supportthe STL algorithmsisrt' in placeyet.

As anexample,considerthefor_each() algorithm. You handthis two iteratorsfor the starting
and endingpoints,anda pointerto a function that takes an argumentof the sametype that your
iteratorsproduce. for_each() will sweepfrom the beginning to the end, pull out eachelement
and passit asan agumentwhile it dereferencegour function pointer So for_each() actually
performsthe operationghathave beenexplicitly written outin mostof the examplesin this paper
In STLSHAPE.CPPFor example:

for (iter j=shapes.begin(); j!=shapes.end(); j++)
delete *j;

You canseethis clearlyif you look atthetemplatedescribingfor_each():

15

templ ate <class I nputlterator, class Function> Function
for_each (Inputlterator first,
I nputlterator |ast,
Function f)

{
while (first !'= last)
f(*first++);
return f;
}

Thefirstimpressiorof this seemdairly simple: Function mustbeapointerto afunctionwhich
takes,asanargument.anobjecof whatever Inputlterator selectsHowever, thefollowing example
shaws thatthereareactuallya numberof differentwaysthis templatecanbeexpanded:

/1: A gol.cpp -- Use of STL for_each al gorithm
#i ncl ude <i ostreanp

#i ncl ude <vector>

#i ncl ude <al go>

#i ncl ude <defalloc. h>

#i fdef _ BORLANDC _
usi ng nanespace std

#endi f
class foo
{ . .
static int count;
char * id;
public:
foo (char * ID) : id(I1D { count++; };
~foo() {
cout << id << " count =" << --count << endl;
}
}s

int foo::count = 0;

cl ass fooVector : public vector<foo*>

{
public:
fooVector(char* ID) {
for(int i =0; i < 5; i++)
push_back(new foo(ID));
}
b

/1 (1) Sinple function
voi d Destroy(foo* fp) { delete fp; }

/1 (2) Tenplate class w operator()()
tenpl ate <class T> cl ass Destroy

{

16

public:
void operator () (T x) {
del ete x;

}
b

/1 (3) Tenplate function
templ ate <cl ass T>void wi pe(T* x)

{
s

/1 (4) Defalloc.h deallocate() tenplate function
/1 Borland nenory.h has a deallocate tenplate

/1 that supercedes the one in defalloc.h. This
/1 is a problemfor their STL inplenentation

/1 The following is the same as in defalloc. h,

/1 with a distinct nanme. It doesn’t get the

/1 desired results because

/1 operator delete(buffer) doesn't call

/1 the destructor.

/1

template <class T> inline void ny_deall oc(T* buffer)

{

del ete x;

.. operator del ete(buffer);
/1 delete buffer;
/1 this works correctly

}

/1 (5) Wiy not have a generic tool to handle
/1 this problen?

templ ate <cl ass | nputlterator>
void delete_all (Inputlterator first,
Inputlterator |ast)
{
while (first = last)
{
del ete *first;
first++;
}
b

void main()
{
fooVector A("one");
for_each(A begin(), A end(), Destroy);

#ifdef _MSC VER // Wn't conpile with BC5.01
fooVector B("two");
for_each(B. begin(), B.end(), Destroy<foo*>());
#endi f

17

#i fdef __BORLANDC _
/1 Wn't conpile with VC++ 4.2
fooVector C("three");
for_each(C. begin(), C end(), wpe);
fooVector D("four");
/1 Correct behavior, but doesn’t produce
/1 desired results
for_each(D. begin(), D.end(), ny_dealloc<foo*>);
/1 Al so conpiles correctly:
fooVector D2("four and 1/2");
for_each(D2. begin(), D2.end(), ny_dealloc);
#endi f

fooVector E("five");

delete_al |l (E. begin(), E end());

/1 Maybe this isn't so bad after all

fooVector F("six");

for (fooVector::iterator i = F.begin();
i !'= F.end(); i++)

{

del ete *i;
}
}

Firstof all, you'll noticethatwe've maovedinto no-compilers land,asneitherof thetwo promi-
nentcompilerswill accepthisentireprogram.But it seemgeasonablgafeto assumehatsomeday
all compilerswill acceptit.

The classfoo keepsa staticcountof how mary foo objectshave beencreated andtells you as
they aredestrged. In addition,eachfoo keepsachar* identifierto malke trackingthe outputeasier

The fooVector is inheritedfrom instantiatedvector<foo*>, andin the constructorit creates
somefoo objects handingeachoneyour desiredchar*. ThefooVector makestestingquitesimple,
asyou'll see.

The commentechumbersnext to the approache$or destructioncorrespondo the stringsused
to createthe correspondindgooVector in main(). Approachoneis the simplepointerto-function,
which works but hasthe dravbackthat you mustwrite a nev Destroy function for eachdifferent
type. The obvious solutionis to make a template but approachtwo shaws thata templatewith an
overloadedbperator()() will alsowork, althoughBorland5.01won’t compileit.

Ontheotherhand,approachhreealsomakessensewhy not useatemplatefunction?Borland
handleghisfine, but Microsoft4.2won’t compileit.

Thereal questionis this: sincethis is obviously somethingyou might wantto do a lot, theres
probablyalreadyawayto doitin the STL, right? Well, themostlikely candidatés thedeallocate()
templatethat’s in defalloc.h However, Borland hasa deallocate() templatein memory.h that
clasheswith this, andthat's a problemfor the STL. But to try it outanyway; I've copiedthe proper
deallocate() from defalloc.h andgivenit a uniquenamefor approachour: my_dealloc(). This
compilesfine, but it doesnt producethedesiredresultsbecausghecode::operator delete(luffer);
explicitly says'just releasehememory dont call thedestructor'whichisn’t whatwe want. Sothe
approacHails andyou cannotjust write a simpleline of codeusingthe pre-&isting STL code.

18

Sincethatfailed, it seemdike thereshouldbe analgorithmto deleteall the pointersin a con-
tainer sowhy not make one. Approachfive doesthis usingfor_each() asa startingpoint. Thisis
nice andsinceyou have the sourcecodefor the STL in the headeffiles, you could make your own
extensionby insertingthis into algo.h. But it's too badits not partof the standard.

After looking at all theseissuesapproactsix, which is the oneusedthroughoutthe restof the
papey doesnt look sobadarnymore.It's afew morecharacterso typebut it's easy straightforvard,
andyou know whatit will do. Ontheotherhand,for_each() is arelatively simplealgorithmandif
you aretrying to do somethingnorecomplicatedt may be well worth your while to look through
the STL algorithmsto seeif partor all of your problemis alreadysolved.

7 Whereto go from here

Much of the time you will find yourself making relatively simple useof the STL. Either you'll
just createcontainersof objects(asshavn earlier string is probablythe mostpopularcandidate),
or you'll createcontainersof pointersto baseclassego supportpolymorphiccalls on groupsof
objects. The corvenience efficiency andreliability of the STL for theseactuities will certainly
improve your programmingproductvity.

However, the STL haspowerful implicationsasa tool with whichto createothertools, aswas
briefly shavn in the STREDITandFILELIST tools. It's asif the STL hasturnedC++into a“Very
High Level Language’by moving you away from the low level details. As a result, peopleare
beginningto createsomeverypotentools.

Whenyou stepinto this realm you mustbegin to understandnuch more of the underlying
structureof the STL; the learningcurve from relatively simpleusageto creatingsophisticatedools
is rathersteepandshouldnt betakenlightly.

The easiesfplaceto startwhenlooking for more compleity is in the help file and examples
that comewith the StandardC++ Library from RogueWave (packagedas part of Borland C++
5). Hereyou'll find descriptionsandexamplesof therestof the STL containersaswell asall the
algorithms. Many of the examplesare useful and nontriial, suchasan inventory system,radix
sort, spellingchecér, telephonedatabasegraphs,a concordancean RPN calculator bankteller
simulation,polynomialrootfinder, andmore.

Othergoodresourcesrethe C++ Programmers Guideto the Standad TemplateLibrary by
Mark Nelson(IDG Books1995,ISBN1-56884-314-3and The STL Primer by GrahamGlassand
Brett Schucher{Prentice-HallLl996,ISBN 0-13-454976-7).

In the past10 yearsBruce Eckel haspublishedover 100 articlesand given talks and
seminargo thousandshroughoutheworld. For moreinformationon consulting train-
ing andpublic seminarsyisit MindVie\/\H, oremailBr uce@tckel Obj ects. com

1SeeURL http://www MindView.net

19

	The Basic Concepts
	Containers of strings
	Inheriting from STL containers
	Directory listing

	The amazing set
	The magic of maps
	STL algorithms
	Where to go from here

